Drone to find survivors via phones

Home Technologist Online Drone to find survivors via phones

Swiss computer science student Jonathan Cheseaux has developed a system for locating a person via his or her mobile phone with a drone, which could be used to find victims in natural disasters.

Swiss computer science student Jonathan Cheseaux has developed a system for locating a person via his or her mobile phone with a drone, which could be used to find victims in natural disasters.

A drone makes large circles in the sky. With two powerful antennas, it sniffs the data packets emitted by mobile phones. On the ground, an interface developed specifically for this project makes it possible to track the flight of a small robotic aircraft in real time from a computer. Colored dots visible on the screen map indicate the spotted phones. The vehicle tightens its flight around the selected device to indicate its position.

“In the best tests we have performed, the place indicated was within 10 meters,” says Jonathan Cheseaux, who worked on the project for his Master’s degree in computer science at École Polytechnique Fédérale de Lausanne (EPFL).

Following an earthquake or another natural disaster, it is often difficult to know the position of victims under the rubble. As most people, even in poor countries, have a mobile phone, the members of EPFL’s Mobile Communications Laboratory had the idea of using phones to identify the position of victims and thereby facilitate a search.

When WiFi mode is activated, the devices emit data packets at regular intervals so that it’s possible to know various parameters, including the power received by the antenna connection. This can vary depending on the surrounding terrain, the weather or interference. The signals also weaken as the layer of rubble over a person gets thicker – another important factor.

Refining the system to eliminate weaker signals

But there is little similarity between these signals and the distance in meters that would make it possible to pinpoint the position of the device. With the drone, it’s the GPS points of the captured signals from several places that locate the phone. These benchmarks are considered the centre of circles that could potentially find the phone. The intersection of these determines the location of the phone and, therefore, probably the person.

“By refining the system to automatically eliminate weaker signals, the system has become even more accurate,” explains the Master’s student. “Flight tests have located a cell phone on campus with high accuracy.”

“The drone’s WiFi antenna could be replaced by Avalanche Victim Detectors (DVA) which would enable the rapid and inexpensive deployment of the first avalanche searches,” predicts the student, who is also an amateur mountaineer.

The challenge of connecting to WiFi

Cheseaux also noted the challenge of connecting to the WiFi network of a device through the drone – without human intervention. An antenna on the plane allows the device to ‘guess’ the identity of the router that connects the phone and then ‘pretend’ to be it. It can thereby establish communication. “In the case of natural disasters, it would provide a substitution network when connections have been destroyed,” he says. But for now, this system only works if the network is open and not password protected.

The work has also helped highlight issues of confidentiality and the protection of private data. Recovering the names of registered WiFi (SSID) by a smartphone is done to establish the habits of owners. The MAC address, a unique identifier, can also be recovered by the drone. It identifies the device brand and deconstructs statistics on the distribution of the smartphone, router and printer brands.

Adapted from EPFL Mediacom’s Summer Series.


Robert West, researcher at EPFLRobert West, researcher at EPFL

A Swiss researcher has created a system that scans Wikipedia for important articles that are missing in other languages. This project…
Hanne Jarmer

A 100-metre freefall, a trip into space, or a job as head of a department that is on the point…

Humanoid robots are finally learning to charm us. Can French-founded SoftBank Robotics stay ahead of the competition after a decade…
TUM Fotostelle

Realistic training for extreme flight conditions.